Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Front Genet ; 15: 1381917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746057

RESUMEN

MicroRNAs (miRNAs) are promising biomarkers for the early detection of disease, and many miRNA-based diagnostic models have been constructed to distinguish patients and healthy individuals. To thoroughly utilize the miRNA-profiling data across different sequencing platforms or multiple centers, the models accounting the batch effects were demanded for the generalization of medical application. We conducted transcription factor (TF)-mediated miRNA-miRNA interaction network analysis and adopted the within-sample expression ratios of miRNA pairs as predictive markers. The ratio of the expression values between each miRNA pair turned out to be stable across multiple data sources. A genetic algorithm-based classifier was constructed to quantify risk scores of the probability of disease and discriminate disease states from normal states in discovery, with a validation dataset for COVID-19, renal cell carcinoma, and lung adenocarcinoma. The predictive models based on the expression ratio of interacting miRNA pairs demonstrated good performances in the discovery and validation datasets, and the classifier may be used accurately for the early detection of disease.

2.
World J Surg ; 48(1): 86-96, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38686746

RESUMEN

BACKGROUND: Low-grade appendiceal mucinous neoplasms (LAMN) are very rare, accounting for approximately 0.2%-0.5% of gastrointestinal tumors. We conducted a multicenter retrospective study to explore the impact of different surgical procedures combined with HIPEC on the short-term outcomes and long-term survival of patients. METHODS: We retrospectively analyzed the clinicopathological data of 91 LAMN perforation patients from 9 teaching hospitals over a 10-year period, and divided them into HIPEC group and non-HIPEC group based on whether or not underwent HIPEC. RESULTS: Of the 91 patients with LAMN, 52 were in the HIPEC group and 39 in the non-HIPEC group. The Kaplan-Meier method predicted that 52 patients in the HIPEC group had 5- and 10-year overall survival rates of 82.7% and 76.9%, respectively, compared with predicted survival rates of 51.3% and 46.2% for the 39 patients in the non-HIPEC group, with a statistically significant difference between the two groups (χ2 = 10.622, p = 0.001; χ2 = 10.995, p = 0.001). Compared to the 5-year and 10-year relapse-free survival rates of 75.0% and 65.4% in the HIPEC group, respectively, the 5-year and 10-year relapse-free survival rates of 48.7% and 46.2% in the non-HIPEC group were significant different between the two outcomes (χ2 = 8.063, p = 0.005; χ2 = 6.775, p = 0.009). The incidence of postoperative electrolyte disturbances and hypoalbuminemia was significantly higher in the HIPEC group than in the non-HIPEC group (p = 0.023; p = 0.044). CONCLUSIONS: This study shows that surgery combined with HIPEC can significantly improve 5-year and 10-year overall survival rates and relapse-free survival rates of LAMN perforation patients, without affecting their short-term clinical outcomes.


Asunto(s)
Adenocarcinoma Mucinoso , Neoplasias del Apéndice , Quimioterapia Intraperitoneal Hipertérmica , Humanos , Estudios Retrospectivos , Masculino , Femenino , Neoplasias del Apéndice/terapia , Neoplasias del Apéndice/mortalidad , Neoplasias del Apéndice/patología , Persona de Mediana Edad , Adulto , Adenocarcinoma Mucinoso/terapia , Adenocarcinoma Mucinoso/mortalidad , Adenocarcinoma Mucinoso/patología , Anciano , Terapia Combinada , Resultado del Tratamiento , Tasa de Supervivencia , Clasificación del Tumor , Perforación Intestinal/etiología , Neoplasias Peritoneales/terapia , Neoplasias Peritoneales/mortalidad
3.
Nat Commun ; 15(1): 3561, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670996

RESUMEN

Lysine lactylation (Kla) links metabolism and gene regulation and plays a key role in multiple biological processes. However, the regulatory mechanism and functional consequence of Kla remain to be explored. Here, we report that HBO1 functions as a lysine lactyltransferase to regulate transcription. We show that HBO1 catalyzes the addition of Kla in vitro and intracellularly, and E508 is a key site for the lactyltransferase activity of HBO1. Quantitative proteomic analysis further reveals 95 endogenous Kla sites targeted by HBO1, with the majority located on histones. Using site-specific antibodies, we find that HBO1 may preferentially catalyze histone H3K9la and scaffold proteins including JADE1 and BRPF2 can promote the enzymatic activity for histone Kla. Notably, CUT&Tag assays demonstrate that HBO1 is required for histone H3K9la on transcription start sites (TSSs). Besides, the regulated Kla can promote key signaling pathways and tumorigenesis, which is further supported by evaluating the malignant behaviors of HBO1- knockout (KO) tumor cells, as well as the level of histone H3K9la in clinical tissues. Our study reveals HBO1 serves as a lactyltransferase to mediate a histone Kla-dependent gene transcription.


Asunto(s)
Histonas , Factor C1 de la Célula Huésped , Lisina , Transcripción Genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Células HEK293 , Animales , Línea Celular Tumoral , Sitio de Iniciación de la Transcripción , Regulación de la Expresión Génica , Ratones , Procesamiento Proteico-Postraduccional
4.
Cell Rep ; 43(4): 114032, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568805

RESUMEN

N(6)-methyladenosine (m6A) critically regulates RNA dynamics in various biological processes. The m6A demethylase ALKBH5 promotes tumorigenesis of glioblastoma, while the intricate web that orchestrates its regulation remains enigmatic. Here, we discover that cell density affects ALKBH5 subcellular localization and m6A dynamics. Mechanistically, ALKBH5 is phosphorylated by the large tumor suppressor kinase 2 (LATS2), preventing its nuclear export and enhancing protein stability. Furthermore, phosphorylated ALKBH5 reciprocally erases m6A from LATS2 mRNA, thereby stabilizing this transcript. Unexpectedly, LATS2 depletion suppresses glioblastoma stem cell self-renewal independent of yes-associated protein activation. Additionally, deficiency in either LATS2 or ALKBH5 phosphorylation impedes tumor progression in mouse xenograft models. Moreover, high levels of LATS2 expression and ALKBH5 phosphorylation are associated with tumor malignancy in patients with gliomas. Collectively, our study unveils an oncogenic positive feedback loop between LATS2 and ALKBH5, revealing a non-canonical branch of the Hippo pathway for RNA processing and suggesting potential anti-cancer interventions.


Asunto(s)
Adenosina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB , Proteínas Serina-Treonina Quinasas , Proteínas Supresoras de Tumor , Humanos , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Fosforilación , Ratones , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Adenosina/metabolismo , Retroalimentación Fisiológica , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinogénesis/genética , Línea Celular Tumoral , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células HEK293 , ARN Mensajero/metabolismo , ARN Mensajero/genética , Autorrenovación de las Células
5.
Cell Signal ; 117: 111094, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38341123

RESUMEN

Hypoxia-inducible transcription factors (HIFs) are key transcription factors for cellular response to low oxygen levels. However, the specific mediators responsible for activating downstream transcription are not well characterized. We previously identified Protein Arginine methyltransferase 2 (PRMT2), a highly expressed methyltransferase in glioblastoma multiforme, as a transcription co-activator. And we established a connection between PRMT2-mediated histone H3R8 asymmetric methylation (H3R8me2a) and transcription activation. Here we find that PRMT2 is activated by HIF1α under hypoxic conditions. And we demonstrate that PRMT2 and its H3R8me2a activity are required for the transcription activation of a significant subset of hypoxia-induced genes. Consequently, the inactivation of PRMT2 suppresses hypoxia-induced glioblastoma cell migration, attenuates tumor progression, and enhances chemotherapeutic sensitivity in mouse xenograft models. In addition, our analysis of clinical glioma specimens reveals a correlation between PRMT2 protein levels, HIF1α abundance, and an unfavorable prognosis. Our study establishes HIF1α-induced PRMT2 as a critical modulator in the activation of hypoxia-related transcriptional programs, ultimately driving malignant progression.


Asunto(s)
Glioblastoma , Humanos , Ratones , Animales , Glioblastoma/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Factores de Transcripción/metabolismo , Metilación , Activación Transcripcional , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 49(1): 130-140, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403346

RESUMEN

This study induced biological stress in Sorbus pohuashanensis suspension cell(SPSC) with yeast extract(YE) as a bio-tic elicitor and isolated and identified secondary metabolites of triterpenoids produced under stress conditions. Twenty-six triterpenoids, including fifteen ursane-type triterpenoids(1-15), two 18,19-seco-ursane-type triterpenoids(16-17), four lupine-type triterpenoids(18-21), two cycloartane-type triterpenoids(22-23), and three squalene-type triterpenoids(24-26), were isolated and purified from the methanol extract of SPSC by chromatography on silica gel, MCI, Sephadex LH-20, and MPLC. Their structures were elucidated by spectroscopic analyses. All triterpenoids were isolated from SPSC for the first time and 22-O-acetyltripterygic acid A(1) was identified as a new compound. Selected compounds were evaluated for antifungal, antitumor, and anti-inflammatory activities, and compound 1 showed an inhibitory effect on NO production in LPS-induced RAW264.7 cells.


Asunto(s)
Triterpenos Pentacíclicos , Sorbus , Triterpenos , Animales , Ratones , Sorbus/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Células RAW 264.7 , Estructura Molecular
7.
Cell Prolif ; : e13612, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38348888

RESUMEN

Ageing and cell senescence of mesenchymal stem cells (MSCs) limited their immunomodulation properties and therapeutic application. We previously reported that nucleosome assembly protein 1-like 2 (Nap1l2) contributes to MSCs senescence and osteogenic differentiation. Here, we sought to evaluate whether Nap1l2 impairs the immunomodulatory properties of MSCs and find a way to rescue the deficient properties. We demonstrated that metformin could rescue the impaired migration properties and T cell regulation properties of OE-Nap1l2 BMSCs. Moreover, metformin could improve the impaired therapeutic efficacy of OE-Nap1l2 BMSCs in the treatment of colitis and experimental autoimmune encephalomyelitis in mice. Mechanistically, metformin was capable of upregulating the activation of AMPK, synthesis of l-arginine and expression of inducible nitric oxide synthase in OE-Nap1l2 BMSCs, leading to an increasing level of nitric oxide. This study indicated that Nap1l2 negatively regulated the immunomodulatory properties of BMSCs and that the impaired functions could be rescued by metformin pretreatment via metabolic reprogramming. This strategy might serve as a practical therapeutic option to rescue impaired MSCs functions for further application.

8.
Inorg Chem ; 63(2): 1378-1387, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38164710

RESUMEN

The zero-valent iron (ZVI) has attracted increasing attention due to the enhanced reactivity of ZVI to uranium wastewater. However, ZVI practical application is hampered due to its susceptibility to oxidation and the formation of passivation layers during storage and in situ restoration. To address these issues, we used a biosulfuration approach to modify ZVI for application in uranium ore wastewater treatment. A series of physicochemical characterization tools and photoelectronic analyses showed that BS-ZVI considerably increased carrier separation efficiency and visible light absorption capacity, resulting in a significant photoassisted enhancement effect on uranium extraction. Accordingly, the uranium removal efficiency of BS-ZVI reached 91% within 60 min, and its maximum adsorption capacity was 336.3 mg/g. By analyzing the mechanism, the improved U(VI) removal performance was mostly responsible on the dissolution of the passivation layer on the surface of ZVI, the generation of Fe(II) and FeS, and the important role of Shewanella putrefaciens extracellular polymers (EPS). Overall, the BS-ZVI biohybrid merges with the high activity of ZVI, bio-FeS, and self-regeneration ability of bacteria, expanding a promising new approach for sustainable treatment of uranium mine wastewater.

9.
Cell Death Discov ; 9(1): 440, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052785

RESUMEN

Metabolic reprogramming is a major feature of cancer, and aerobic glycolysis is one of the most widely studied metabolic reprogramming processes. Acidic ribosome protein P2 (RPLP2) is associated with both tumorigenesis and endoplasmic reticulum stress. However, limited knowledge exists regarding the role of RPLP2 in hepatocellular carcinoma (HCC) progression. In the present study, we observed a significant upregulation of RPLP2 in HCC tissues. Moreover, RPLP2 expression is closely correlated with patient prognosis and survival. The subsequent experimental validation demonstrated that RPLP2 exerted a regulatory effect on the expression of glycolytic enzymes and lactate production, thereby facilitating HCC cell proliferation. Mechanistically, the PI3K/AKT signalling pathway was found to play an important role in the regulation of hypoxia-inducible factor-1α (HIF-1α)-mediated aerobic glycolysis and cell growth. RPLP2 activates TLR4 on the surface of HCC cells and the downstream PI3K/AKT pathway through autocrine signalling. This activation then facilitates the entry of HIF-1α into the nucleus, enabling it to fulfil its transcriptional function. In conclusion, our findings suggested that RPLP2 induces a metabolic shift towards aerobic glycolysis and facilitates the progression of HCC through TLR4-dependent activation of the PI3K/AKT/HIF-1α pathway. Our study revealed the novel mechanism by which the ribosomal protein RPLP2 regulates glycolysis to promote HCC progression. These findings may offer a potential therapeutic target for HCC treatment.

10.
Front Oncol ; 13: 1218056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601681

RESUMEN

Objectives: This study aimed to identify colorectal cancer (CRC)-associated phylogenetic and functional bacterial features by a large-scale metagenomic sequencing and develop a binomial classifier to accurately distinguish between CRC patients and healthy individuals. Methods: We conducted shotgun metagenomic analyses of fecal samples from a ZhongShanMed discovery cohort of 121 CRC and 52 controls and SouthernMed validation cohort of 67 CRC and 44 controls. Taxonomic profiling and quantification were performed by direct sequence alignment against genome taxonomy database (GTDB). High-quality reads were also aligned to IGC datasets to obtain functional profiles defined by Kyoto Encyclopedia of Genes and Genomes (KEGG). A least absolute shrinkage and selection operator (LASSO) classifier was constructed to quantify risk scores of probability of disease and to discriminate CRC from normal for discovery, validation, Fudan, GloriousMed, and HongKong cohorts. Results: A diverse spectrum of bacterial and fungi species were found to be either enriched (368) or reduced (113) in CRC patients (q<0.05). Similarly, metabolic functions associated with biosynthesis and metabolism of amino acids and fatty acids were significantly altered (q<0.05). The LASSO regression analysis of significant changes in the abundance of microbial species in CRC achieved areas under the receiver operating characteristic curve (AUROCs) of 0.94 and 0.91 in the ZhongShanMed and SouthernMed cohorts, respectively. A further analysis of Fudan, GloriousMed, and HK cohorts using the same classification model also demonstrated AUROC of 0.80, 0.78, and 0.91, respectively. Moreover, major CRC-associated bacterial biomarkers identified in this study were found to be coherently enriched or depleted across 10 metagenomic sequencing studies of gut microbiota. Conclusion: A coherent signature of CRC-associated bacterial biomarkers modeled on LASSO binomial classifier maybe used accurately for early detection of CRC.

11.
J Cell Mol Med ; 27(22): 3465-3477, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602966

RESUMEN

Periodontal bone regeneration is a major challenge in the treatment of periodontitis. However, the regenerative vitality of periodontal ligament cells (PDLCs) declines in the environment of periodontitis and accompanying oxidative stress. This study aimed to investigate the functional mechanisms of Bach1, a transcriptional suppressor involved in oxidative stress response, and its regulation of PDLC osteogenesis under inflammatory conditions. We observed a significant elevation in Bach1 expression in periodontal tissues with periodontitis and PDLCs under inflammatory conditions. Knockdown of Bach1 alleviated the inflammation-induced oxidative stress level and partly offset the inhibitory effect of inflammatory conditions on osteogenesis, as well as the expression of osteogenic genes BMP6, OPG and RUNX2. Similarly, knockdown of Bach1 protects PDLCs from inflammatory damage to periodontal bone regeneration in vivo. Furthermore, we found that Bach1 could bind to the histone methyltransferase EZH2, and the binding increased under inflammatory conditions. Bach1 enhanced the ability of EZH2 to catalyse H3K27me3 on the promoter region of RUNX2 and BMP6, thus repressing the expression of osteoblastic genes. In conclusion, our study revealed that knockdown of Bach1 effectively rescued the osteogenesis and oxidative stress of PDLCs with inflammation. Bach1 could be a promising target for enhancing periodontal tissue regeneration under periodontitis conditions.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Periodontitis , Humanos , Regeneración Ósea/genética , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Inflamación/genética , Inflamación/metabolismo , Osteogénesis/genética , Ligamento Periodontal/metabolismo , Periodontitis/genética , Periodontitis/metabolismo
12.
J Int Med Res ; 51(8): 3000605231190766, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37590427

RESUMEN

BACKGROUND: Migration of tissue clips into the common bile duct and formation of common bile duct stones after laparoscopic biliary surgery are extremely rare complications, and their etiologies remain elusive. We herein report four cases of migrated clips complicated by stones after laparoscopic biliary surgery. CASE PRESENTATION: Two patients (72- and 62-year-old women) were admitted because of varying degrees of epigastric pain, and two patients (88- and 69-year-old men) were admitted because of epigastric pain with chills and fever. They had previously undergone laparoscopic cholecystectomy (LC) plus laparoscopic common bile duct exploration (LCBDE) in our hospital. In Cases 1, 2, and 4, surgery revealed gallbladder triangle adhesion, inflamed dilated bile ducts, and fragile tissues. Blood tests showed elevated liver enzymes and bilirubin. Imaging indicated common bile duct stones. All patients underwent successful surgery with Hem-o-lok clips. No postoperative pain recurred. CONCLUSION: Clip migration after laparoscopic biliary surgery may be associated with preoperative biliary duct inflammation, improper use of tissue clips, and postoperative biliary leak-induced inflammation. The clinical presentation is similar to that of calculous cholangitis. Once symptoms of cholangitis appear in patients with a history of LC or LCBDE, the possibility of clip migration and stone formation should be considered.


Asunto(s)
Colangitis , Colecistectomía Laparoscópica , Coledocolitiasis , Cálculos Biliares , Laparoscopía , Masculino , Humanos , Femenino , Coledocolitiasis/diagnóstico por imagen , Coledocolitiasis/etiología , Coledocolitiasis/cirugía , Laparoscopía/efectos adversos , Colangitis/etiología , Colangitis/cirugía , Colecistectomía Laparoscópica/efectos adversos , Dolor Abdominal
13.
J Biol Chem ; 299(8): 105071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474102

RESUMEN

Paraspeckles (PS) are nuclear structures scaffolded by the long noncoding RNA NEAT1 and protein components such as NONO and SFPQ. We previously found that the upregulation of RNA N6-methyl-adenosine (m6A) demethylase ALKBH5 facilitates hypoxia-induced paraspeckle assembly through erasing m6A marks on NEAT1, thus stabilizing it. However, it remains unclear how these processes are spatiotemporally coordinated. Here we discover that ALKBH5 specifically binds to proteins in PS and forms phase-separated droplets that are incorporated into PS through its C-terminal intrinsically disordered region (cIDR). Upon exposure to hypoxia, rapid ALKBH5 condensation in PS induces m6A demethylation of NEAT1, which further facilitates PS formation before the upregulation of ALKBH5 expression. In cells expressing ALKBH5 lacking cIDR, PS fail to be formed in response to hypoxia, accompanied with insufficient m6A demethylation of NEAT1 and its destabilization. We also demonstrate that ALKBH5-cIDR is indispensable for hypoxia-induced effects such as cancer cell invasion. Therefore, our study has identified the role of ALKBH5 in phase separation as the molecular basis of the positive feedback loop for PS formation between ALKBH5 incorporation into PS and NEAT1 stabilization.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Paraspeckles , ARN Largo no Codificante , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Hipoxia , Paraspeckles/metabolismo , ARN Largo no Codificante/genética , Activación Transcripcional , Regulación hacia Arriba
14.
J Food Sci ; 88(7): 3075-3089, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37282793

RESUMEN

Bioactive packaging can improve the shelf-life of food products and enhance consumer health. It can also alleviate environmental stress on the planet by reducing food waste. Here, the electrospinning of tea tree oil-loaded 2-hydroxypropyltrimethyl ammonium chloride chitosan nanofibers was investigated. The fabricated nanofiber films were characterized by scanning electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and contact angle meter analysis. The prepared nanofibers have a well-defined diameter of about 200 nm and a smooth shape. They have good antibacterial properties against Staphylococcus aureus and Escherichia coli in vitro. Tea tree oil-loaded chitosan-based nanofibers were found to be effective in delaying spoilage and extending the shelf life of salmon by sensory evaluation, texture analysis, color, total viable counts, thiobarbituric acid, and total volatile basic nitrogen during storage in the freshness experiments, thus indicating their health benefits in bioactive packaging.


Asunto(s)
Quitosano , Nanofibras , Eliminación de Residuos , Aceite de Árbol de Té , Animales , Aceite de Árbol de Té/farmacología , Nanofibras/química , Quitosano/farmacología , Quitosano/química , Salmón , Antibacterianos/farmacología , Antibacterianos/química , Alimentos Marinos , Esperanza de Vida
15.
ACS Nano ; 17(13): 12087-12100, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37327456

RESUMEN

Radiation therapy (RT) has the capacity to induce immunogenic death in tumor cells, thereby potentially inducing in situ vaccination (ISV) to prime systemic antitumor immune responses. However, RT alone is often faced with various limitations during ISV induction, such as insufficient X-ray deposition and an immunosuppressive microenvironment. To overcome these limitations, we constructed nanoscale coordination particles AmGd-NPs by self-assembling high-Z metal gadolinium (Gd) and small molecular CD73 inhibitor AmPCP. Then, AmGd-NPs could synergize with RT to enhance immunogenic cell death, improve phagocytosis, and promote antigen presentation. Additionally, AmGd-NPs could also gradually release AmPCP to inhibit CD73's enzymatic activity and prevent the conversion of extracellular ATP to adenosine (Ado), thereby driving a proinflammatory tumor microenvironment that promotes DC maturation. As a result, AmGd-NPs sensitized RT induced potent in situ vaccination and boosted CD8+ T cell-dependent antitumor immune responses against both primary and metastatic tumors, which could also be potentiated by immune checkpoint inhibitory therapy.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Linfocitos T CD8-positivos/patología , Inmunidad , Fagocitosis , Microambiente Tumoral , Neoplasias/patología , Línea Celular Tumoral
16.
Polymers (Basel) ; 15(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242832

RESUMEN

Polypropylene film is the most important organic dielectric in capacitor technology; however, applications such as power electronic devices require more miniaturized capacitors and thinner dielectric films. The commercial biaxially oriented polypropylene film is losing the advantage of its high breakdown strength as it becomes thinner. This work carefully studies the breakdown strength of the film between 1 and 5 microns. The breakdown strength drops rapidly and hardly ensures that the capacitor reaches a volumetric energy density of 2 J/cm3. Differential scanning calorimetry, X-ray, and SEM analyses showed that this phenomenon has nothing to do with the crystallographic orientation and crystallinity of the film but is closely related to the non-uniform fibers and many voids produced by overstretching the film. Measures must be taken to avoid their premature breakdown due to high local electric fields. An improvement below 5 microns will maintain a high energy density and the important application of polypropylene films in capacitors. Without destroying the physical properties of commercial films, this work employs the ALD oxide coating scheme to augment the dielectric strength of a BOPP in the thickness range below 5 µm, especially its high temperature performance. Therefore, the problem of the reduction in dielectric strength and energy density caused by BOPP thinning can be alleviated.

17.
Nat Commun ; 14(1): 2400, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100771

RESUMEN

Usher syndrome type 1 F (USH1F), caused by mutations in the protocadherin-15 gene (PCDH15), is characterized by congenital deafness, lack of balance, and progressive blindness. In hair cells, the receptor cells of the inner ear, PCDH15 is a component of tip links, fine filaments which pull open mechanosensory transduction channels. A simple gene addition therapy for USH1F is challenging because the PCDH15 coding sequence is too large for adeno-associated virus (AAV) vectors. We use rational, structure-based design to engineer mini-PCDH15s in which 3-5 of the 11 extracellular cadherin repeats are deleted, but which still bind a partner protein. Some mini-PCDH15s can fit in an AAV. An AAV encoding one of these, injected into the inner ears of mouse models of USH1F, produces a mini-PCDH15 which properly forms tip links, prevents the degeneration of hair cell bundles, and rescues hearing. Mini-PCDH15s may be a useful therapy for the deafness of USH1F.


Asunto(s)
Oído Interno , Síndromes de Usher , Animales , Ratones , Cadherinas/metabolismo , Oído Interno/metabolismo , Células Ciliadas Auditivas/metabolismo , Audición/genética , Síndromes de Usher/genética , Síndromes de Usher/terapia , Proteínas Relacionadas con las Cadherinas/metabolismo
18.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985560

RESUMEN

Misgurnus anguillicaudatus (loach) is a widely distributed benthic fish in Asia. In this study, the alkaline protease was used to hydrolyze loach, and the hydrolysate products of different molecular weights were obtained by membrane separation. In vitro antioxidant assays showed that the <3 kDa fraction (SLH-1) exhibited the strongest antioxidant activity (DPPH, hydroxyl radical and superoxide radical scavenging ability, and reducing power), while SLH-1 was purified by gel filtration chromatography, and peptide sequences were identified by LC-MS/MS. A total of six peptides with antioxidant activity were identified, namely SERDPSNIKWGDAGAQ (D-1), TVDGPSGKLWR (D-2), NDHFVKL (D-3), AFRVPTP (D-4), DAGAGIAL (D-5), and VSVVDLTVR (D-6). In vitro angiotensin-converting enzyme (ACE) inhibition assay and pancreatic cholesterol esterase (CE) inhibition assay, peptide D-4 (IC50 95.07 µg/mL, 0.12 mM) and D-2 inhibited ACE, and peptide D-2 (IC50 3.19 mg/mL, 2.62 mM), D-3, and D-6 acted as pancreatic CE inhibitors. The inhibitory mechanisms of these peptides were investigated by molecular docking. The results showed that the peptides acted by binding to the key amino acids of the catalytic domain of enzymes. These results could provide the basis for the nutritional value and promote the type of healthy products from hydrolyzed loach.


Asunto(s)
Antioxidantes , Cipriniformes , Animales , Antioxidantes/farmacología , Antioxidantes/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/farmacología , Péptidos/química
19.
J Periodontal Res ; 58(2): 444-455, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36733232

RESUMEN

OBJECTIVE: To investigate the changes in the m6A methylation modification profile of human periodontal ligament cells (hPDLCs) in response to inflammatory conditions. BACKGROUND: Periodontitis is an infectious disease of the periodontal support tissue that leads to the loss of alveolar bone. HPDLCs are primary cells that can repair periodontal tissue defects caused by periodontitis. However, the inflammatory conditions induce inflammatory damage and decrease ossification of hPDLCs. This inflammatory response depends on genetic and epigenetic mechanisms, including m6A methylation. METHODS: HPDLCs were cultured with osteogenic induction medium (NC group), while TNF-α (10 ng/mL) and IL-1ß (5 ng/mL) were added to simulate inflammatory conditions (Inflam group). Then RNA-seq and MeRIP-seq analyses were performed to identify m6A methylation modification in the transcriptome range of hPDLCs. RESULTS: The results showed that the osteogenic differentiation of hPDLCs was inhibited under inflammatory conditions. RNA-seq analysis also revealed that the decreased genes in response to inflammatory conditions were primarily annotated in processes associated with ossification. Compared with the NC group, differentially m6A-methylated genes were primarily enriched in histone modification processes. Among 145 histone modification genes, 25 genes have been reported to be involved in the regulation of osteogenic differentiation, and they include KAT6B, EP300, BMI1, and KDMs (KDM1A, KDM2A, KDM3A, KDM4B, and KDM5A). CONCLUSION: This study demonstrated that the m6A landscape of hPDLCs was changed in response to inflammation. M6A methylation differences among histone modification genes may act on the osteogenic differentiation of hPDLCs.


Asunto(s)
Osteogénesis , Periodontitis , Humanos , Osteogénesis/genética , Células Cultivadas , ARN , Ligamento Periodontal , Epigenoma , Periodontitis/genética , Proteína 2 de Unión a Retinoblastoma/genética , Histona Acetiltransferasas/genética , Histona Demetilasas/genética , Histona Demetilasas con Dominio de Jumonji/genética
20.
Foods ; 12(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36613397

RESUMEN

At present, the incidence rate of diabetes is increasing gradually, and inhibiting α-glucosidase is one of the effective methods used to control blood sugar. This study identified new peptides from rice bran fermentation broth and evaluated their inhibitory activity and mechanism against α-glucosidase. Rice bran was fermented with Bacillus subtilis MK15 and the polypeptides of <3 kDa were isolated by ultrafiltration and chromatographic column, and were then subjected to LC-MS/MS mass spectrometry analysis. The results revealed that the oligopeptide GLLGY showed the greatest inhibitory activity in vitro. Docking studies with GLLGY on human α-glucosidase (PDB ID 5NN8) suggested a binding energy of −7.1 kcal/mol. GLLGY acts as a non-competitive inhibitor and forms five hydrogen bonds with Asp282, Ser523, Asp616, and His674 of α-glucosidase. Moreover, it retained its inhibitory activity even in a simulated digestion environment in vitro. The oligopeptide GLLGY could be developed into a potential anti-diabetic agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA